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We study by a fully nonlinear three-dimensional pseudospectral time-splitting
simulation, the feedback control of a layer of fluid heated from below. The initial
condition corresponds to a steady large-amplitude preferred convection state obtained
at Prandtl number of 7.0 and Rayleigh number of 104, which is about six times the
Rayleigh critical value. A robust controller based on the LQG (linear–quadratic–
Gaussian) synthesis method is used. Both sensors and actuator are thermal-based,
planar, and assumed to be continuously distributed. The simulated results show that
large-amplitude steady-state convection rolls can be suppressed by the linear LQG
controller action. The Green’s function of the controller gives the shape of the control
action corresponding to a point measurement. In addition, for Rayleigh numbers
below the proportional feedback control stability limit, this controller appeared to
be effective in damping out steady-state convection rolls as well. However, in a
region very near the proportional control stability limit, proportional control action
induces subcritical g-type hexagonal convection, which is obtained here through direct
simulations. Note that well above this proportional control limit, the LQG still damps
out all convection. The nonlinear plant model is validated by comparing check cases
with published results.

1. Introduction
Active suppression of onset of convection in a layer of fluid has potentially

important applications in improving the material that goes through solidification in
a mould. For instance, during the growth phase of large silicon wafers or composite
materials, a large thermal gradient typically causes undesirable convective motions
in the melt. To understand the active control of the realistic manufacturing process,
an idealized system is an important starting point. To this end Rayleigh–Bénard
convection (RBC) is ideal for vigorous theoretical analysis.

Many theoretical studies have employed the linear feedback control to increase
the stability threshold of the purely heat conductive state so that no convection
occurs despite the presence of a large thermal gradient (Tang & Bau 1993, 1994,
1998a, b; Howle 1997a, b, c, 2000; Or, Cortelezzi & Speyer 2001). These studies used
the linear plant model and employed a simple controller using the proportional
feedback. The implantable sensor and actuator are assumed to be of the thermal
type and continuously distributed spatially on the horizontal plane. Analysis as
well as experimental results in general indicate that the proportional controller will
stabilize the basic state up to Rayleigh number (Ra) of 3 to 4 times its critical value
of the basic state (see Tang & Bau 1994; Howle 1997a). Furthermore, as shown in
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Tang & Bau (1994), a controller-induced oscillatory instability occurs at a large gain. A
linear–quadratic–Gaussian (LQG) controller has also been studied (Or et al. 2001) to
increase the region of stabilization and with a higher margin of robustness. First, the
stability limit can be raised to about 14 times the critical value of Ra. Secondly,
the gain and phase margins about the design point of the controller appear adequate
for practical implementation.

To develop a control design to be implementable for applicational processes (such
as for crystal growth or a melt), it is crucial to understand the control process for
simpler geometry and material properties. We have been focused on an Oberbeck–
Boussinesq model for a horizontal layer of fluid. The plant dynamics is known as
Rayleigh–Bénard convection (RBC) (Cross & Hohenberg 1993). As a first step, the
performance of the linear controller design for the linear plant dynamics is reported in
Or et al. (2001). In this paper, as a step further, the focus is turned to the performance
of the linear controller design for the fully nonlinear plant dynamics.

It is well known that in a large layer of heated fluid, convection occurs as a
steady pattern of two-dimensional rolls. The two-dimensional convection rolls and
the stability properties were investigated in detail by Clever & Busse (1974) and
Busse & Clever (1979). For the heated layer corresponding to Ra >Rac0 (Rac0 is
computed theoretically to have the value of 1707.762 up to 3 decimal places), the
stable roll pattern occurs only within a band of wavenumber centred approximately
about the critical wavenumber αc =3.117. Within the stable band the rolls realized
do not necessarily have a preferred length scale. Indeed, their wavelength appears
to be dictated by the initial conditions used to select the rolls and by the manner
that the basic state temperature is prescribed spatially and temporally. The band is
bounded on both sides by instabilities that pertain to changing the wavelength of
the rolls but not changing the planform. As the induced rolls acquire a wavelength
too large or too small, an instability will occur to shift their length scale back
to a value close to the critical value. As the value of Ra increases, the rolls will
at some point becomes unstable and the convection structure will converge to a
pattern with more complex spatial or temporal structure. The exact value of Ra at
which the transition occurs is wavenumber dependent. For a Prandtl number (Pr) of
7.0, for instance, the two-dimensional rolls become unstable to a three-dimensional
bimodal convection at roughly Ra ≈ 25Rac0 at the wavenumber of about 2.0 (see the
experimental observations presented in figure 11, Busse & Clever 1979). The transition
highlights a sufficiently strong thermal boundary-layer effect, made possible at Ra
values. The transition to three-dimensional convection occurs at a significantly higher
Ra threshold than the closed-loop stability limit of 14.5Rac0 based on the linear LQG
controller (Or et al. 2001). For our control analysis here, therefore, we need only to
consider the two-dimensional rolls as the initial state of convection to be controlled.

Our present control problem can be investigated most effectively by the use of time-
domain analysis. A three-dimensional fully nonlinear pseudospectral model using a
time-splitting integration method is developed, based on the Oberbeck–Boussinesq
equations. The proportional feedback controller is easily implementable. This case
provides the check cases for code validation purposes. Certain flow patterns that
are known to be induced by the controller effects, such as the oscillation mode
(Tang & Bau 1994) and the g-type hexagons (Or & Kelly 2001), can be obtained
here from the direct numerical simulations and compared with those reported from
previous analyses. In § 2, the nonlinear plant model and the LQG controller will
be briefly described. The results will be presented in § 3, followed by the conclusion
in § 4.
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2. Mathematical formulation
2.1. Nonlinear plant model and numerical solution

The nonlinear plant model is governed by the Oberbeck–Boussinesq equations for a
horizontal layer of fluid. In the non-dimensional form d , d2/κ , κ/d , κ/d2, ρ(κ/d)2 and
�T are used as the scales of length, time, velocity, vorticity, pressure and temperature,
where d is the layer thickness, κ and ρ are the mean thermal diffusivity and density
of the fluid, and �T is the temperature difference between the upper and lower wall
in the purely conductive basic state. The governing non-dimensional equations are,

Pr−1∂tv = Pr−1v × ω + kRaθ − ∇π + ∇2v, (2.1)

∂tθ = −v · ∇θ + w + ∇2θ, (2.2)

∇ · v = 0, (2.3)

where v = (u, v, w) is the velocity vector field, ω = ∇×v is the vorticity, π = p+v · v/2
is the pressure head, θ is the perturbation temperature and k is the unit vector in the
z-direction. The two external parameters are Rayleigh and Prandtl numbers, given
by Ra = g�T d3/νκ and Pr = ν/κ where ν is the mean kinematic viscosity. The
continuity equation (2.3) applies only when the flow is incompressible.

The velocity field is assumed to be non-permeable and non-slip at the upper and
lower walls, thus subject to

v(x, y, 0, t) = 0, v(x, y, 1, t) = 0. (2.4)

The temperature field, on the other hand, is assumed to satisfy the isothermal condition
at the upper wall. The lower wall is non-isothermal owing to the action of the thermal
actuation. It is assumed that a control temperature θc(x, y, t) can be imposed. The
upper and lower thermal boundary conditions for the perturbation field are therefore

θ(x, y, 1, t) = 0, θ(x, y, 0, t) = θc(x, y, t). (2.5)

In order to perform the feedback control, the perturbation temperature field has to
be measured in the fluid. In our model, three sensor planes are embedded in the
layer at carefully chosen levels at z = zs (with s = 1, 2 and 3). For analysis purposes,
these sensor planes are assumed to exert no blockage effects on the flow field. They
measure the planar temperature distribution in the layer,

θ(x, y, zs, t) = θs(x, y, t), s = 1, 2, 3. (2.6)

Assuming a continuous-distributed sensor, θs(x, y, t) are known at sampled points
and time.

In the numerical scheme, the dependent variables u, v, w, p and θ are expressed by
the following truncated, triple sums,


u

v

w

p

θ


 (x, y, z, t) = Re




N∑
n=0

K∑
k=0

M∑
m=−M+1




ukmn

vkmn

wkmn

pkmn

θkmn


 (t)Tn(z) exp(i(kαxx + mαyy))




(2.7)

where Re denotes the real part of the sum, αx and αy are the fundamental
wavenumbers in the x- and y-directions, respectively. The asymmetric treatment
of the indices k and m reduces the number of coefficients by half because the velocity,
pressure and temperature are real dependent variables (see Marcus 1984). These two
parameters are prescribed in the model. The functions Tn(z) (n = 0, 1, . . .) denote the
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Chebyshev polynomials. Note that a linear coordinate transformation is implicitly
assumed to convert the Chebyshev function domain between +1 and −1 to our
physical range 0 � z < 1. The actuator and sensor temperatures, θc and θs (s = 1, 2
and 3), are planar (two-dimensional). They are expanded in double series in a similar
fashion,


θs(z1, t)

θs(z2, t)

θs(z3, t)

θc(0, t)


 (x, y, t) = Re




K∑
k=0

M∑
m=−M+1



θkm,s(z1, t)

θkm,s(z2, t)

θkm,s(z3, t)

θkm,c(0, t)


 exp(i(kαxx + mαyy))


 . (2.8)

In our terminology, the lower thermal boundary condition (2.5) and the sensor
equations (2.6) are, respectively, the input to and output from the nonlinear plant
model.

The nonlinear equations, together with the boundary and the continuity equations
are then solved numerically by using the pseudospectral, time-splitting integration
technique (Gottlieb & Orszag 1977; Canuto et al. 1986; Bodenschatz, Pesch & Ahlers
2000). Marcus (1984) provided a detailed description of the implementation of the
method for the Taylor-vortex flow simulations. Using the time-splitting method, an
integration time step is split into three fractional steps. The first is a nonlinear
fractional step, typically done using an explicit, second-order Adams–Bashforth
scheme,

vN+1/3 = vN + �t 3
2
[vN × ωN + PrRaθN k] − �t 1

2
[vN−1 × ωN−1 + PrRaθN−1k], (2.9)

θN+1/3 = θN − �t 3
2
[vN · ∇θN − wN ] + �t 1

2
[vN−1 · ∇θN−1 − wN−1]. (2.10)

The superscript N here denotes the time step and is not to be confused with
the truncation number for the vertical dependence. A significant fraction of the
total computation load occurs in computing the nonlinear terms. In the collocation
space, the nonlinear terms are computed spatially by point-by-point multiplications.
However, fast Fourier transforms (FFT) and inverse fast Fourier transforms (IFFT)
have to be used to convert the field back and forth between the collocation and the
Chebyshev–Fourier spaces. The fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT) routines are obtained from the library of the Numerical Recipes
(Press et al. 1992), with some minor modifications. For validation, these routines have
been checked against the standard Matlab FFT and IFFT functions and match up
to 15 decimal places. For typical flow fields, the truncation errors from FFT and
IFFT due to aliasing are mainly small (Marcus 1984; Press et al. 1992). We note
that, however, that the FFT method can still be computationally demanding for high-
resolution solutions. The pseudospectral method is generally known to be efficient.
There also exist other efficient methods not using the transforms, for instance, the
reduced-order Galerkin method (Howle 1996).

After obtaining the (N + 1/3)th fractional step with the Adams–Basforth scheme,
we compute the (N + 1)th step from the following equation,

(1 − Pr�t∇2)vN+1 = vN+1/3 − Pr�t∇π, (2.11)

subject to ∇ · vN+1 = 0. It is noted that, in general, ∇ · vN+1/3 �= 0. The most
straightforward procedure for solving (2.11) appears to be splitting the equation
into a pressure step and a viscous step (we refer to it as the direct approach). In
the pressure step, the flow field subject to a no normal-flow boundary condition at
the walls can be solved from a Poisson equation, based on the property that the
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pressure field is irrotational and the flow field satisfies the continuity constraint (2.3).
Next, a diffusive fractional step completes the solution of the fractional velocity and
temperature fields by prescribing the no-slip and thermal boundary conditions at the
walls. As simple as it appeared, the scheme had problems computing the correct flow
field. In his numerical simulation of Taylor vortex flow, Marcus (1984) reported large
boundary errors using this direct approach. In his discussions it was argued that the
shear may play a role and it is not clear whether a similar problem will occur for
RBC. In our study we have applied the direct scheme in our preliminary simulations
and observed large errors even for the open-loop simulations. Thus, it appears that
the problem is common to both Taylor vortex flows and RBC. For more detail about
the cause of the large boundary errors in the direct approach, we refer to Marcus
(1984). Marcus identified the source of errors and developed a procedure to correct
it. His remedy is to further split the fractional solution into a complementary and a
particular solution so that the boundary conditions and the continuity equations are
satisfied numerically. The procedure, however, involves the additional computation
of several Green’s functions and seems elaborate. Since the boundary-value problem
corresponding to (2.11) is linear, we anticipate there are simpler alternative approaches
to resolve the numerical difficulty. Here, we solve the problem involving the pressure
and viscous forces as a single step, without splitting the pressure and viscous terms.
First, we use the continuity equation as the constraint and eliminate the two horizontal
velocity components in favour of the vertical component. Secondly, we obtain the
solution of the boundary-value problem for w and θ . Finally, we recover u and v from
w, Fourier mode by Fourier mode, again using the continuity equation. This scheme
seems significantly simpler and has been tested here to be effective. Because of the
simplicity, it is worth the description as an alternative approach to the time-splitting
procedure.

By eliminating pressure from (2.11), we obtain a single scalar equation governing w,

(1 − Pr�t∇2)∇2∂zw
N+1 = ∇2

⊥∂zw
N+1/3 − ∂2

zz

(
∂xu

N+1/3 + ∂yv
N+1/3

)
. (2.12)

The equation above is integrated in z, this gives

(1 − Pr�t∇2)∇2wN+1 = ∇2
⊥wN+1/3 −

(
∂2

xzu
N+1/3 + ∂2

yzv
N+1/3

)
. (2.13)

The integration constant is zero because of the non-slip boundary condition. (This
constant will depend on the initial conditions when the case of free-slip boundary
conditions is considered). Equation (2.13) is of fourth-order spatially. It has to satisfy
four boundary conditions, as follows,

wN+1 = 0, ∂zw
N+1 = 0 at z = 0, 1. (2.14)

The fourth-order boundary-value problem, (2.12), determines wN+1. After we have
obtained wN+1, the horizontal velocity components corresponding to wN+1 can be
obtained by inverting the continuity and Helmholtz equations, Fourier mode by
Fourier mode. In the expansion, wN+1 is given by

wN+1(x, y, z, t) = Re

{
K∑

k=0

M∑
m=−M+1

wN+1
km (z, t) exp(i(kαxx + mαyy))

}
. (2.15)

Similarly, the horizontal velocity components are[
uN+1(x, y, z, t)

vN+1(x, y, z, t)

]
= Re

{
K∑

k=0

M∑
m=−M+1

[
uN+1

km (z, t)

vN+1
km (z, t)

]
exp(i(kαxx + mαyy))

}
. (2.16)
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Each pair of coefficients (uN+1
km , uN+1

km ) now satisfies a Helmholtz equation

∇2
⊥

[
uN+1

km

vN+1
km

]
= α2

km

[
uN+1

km

vN+1
km

]
, (2.17)

where αkm = {(kαx)
2 + (mαy)

2}1/2. The Helmholtz equation together with the con-

tinuity equation allows us to solve for vN+1
km in terms of wN+1

km , provided that αkm �= 0.
The condition αkm �= 0 can occur in the case of a free-slip wall, but not in the case
of a no-slip wall. We refer to the discussion of Cross & Hohenberg (1993, p. 970).
The perturbation temperature field, on the other hand, is not constrained to have
zero mean field. Using the continuity equation, we obtain the horizontal velocity
components,

uN+1
km =

1

α2
km

∂2
xzw

N+1
km , vN+1

km =
1

α2
km

∂2
yzw

N+1
km . (2.18)

2.2. The proportional feedback controller

In the proportional feedback control, a proportional relationship is constructed
between the input and output of the plant. As in the cases studied by Tang &
Bau (1994) and Or et al. (2001), only one sensor plane is used and the control law in
this case is

θc(0, t) = −Kpθs(zs, t), (2.19)

where Kp is a constant gain and zs is the vertical height of the sensor plane. The
controller is very simple for this case.

2.3. The LQG controller

The theory and design of the LQG controller was described in Or et al. (2001). In
brief, the linear stability equations of the Fourier-decomposed system of convection
and the measurement equation are given in matrix form, respectively, by

ẋ = A x + Bu, z = C x, (2.20)

where the entries of the state vector x are the Chebyshev coefficients of velocity
and temperature perturbations; u (measured at plane z = 0) and z (measured at
planes z1, z2 and z3) are, respectively, the Fourier coefficients of the planar control
and measured temperatures. Note that the Fourier-decomposed equations correspond
to wavenumber αkm and Rayleigh number Ra. The following modifications to the
original formulation of the controller model (Or et al. 2001) have been made here:
(i) the vertical dependence is expanded in terms of the Chebyshev polynomials
instead of the beam functions as the basis functions. The expansion procedure,
originally based on the Galerkin method, has been converted to the tau method. In
the improved numerical procedure, we obtain the exact condition D ≡ 0, in contrast
to the previous condition that D → 0 only as N → ∞. (ii) We no longer consider the
wavenumber as a prescribed parameter here. Instead, an individual modal controller
is developed for each set of wavenumbers (kαx, mαy). There is a set of state-space
equations for each wave vector. In total, there are 2(K + 1)M sets of A , B and C
matrices to be processed.

The LQG controller is comprised of a Kalman filter and an optimal regulator.
The Kalman filter equation and the optimal regulator equation corresponding to the
state-space equations, (2.20), are, respectively,

˙̂x = A∗ x̂ + B∗u + K f (z − ẑ), ẑ = C∗ x̂, u = −K c x̂, (2.21)
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Three-dimensional
nonlinear
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of convection
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�km,c(0,t)
Control action

�km,s(zs,t)
Measurements

Figure 1. The LQG control loop diagram.

where x is the estimate state vector. We distinguish the matrices with asterisk
superscripts to highlight that the system is computed at a nominal (designed)
wavenumber and Rayleigh number, (α∗

km, Ra∗). The Kalman gain vector K f and
the optimal gain vector K c are determined from separate steady-state algebraic
Riccati equations. The Kalman filter is used here as a state observer rather than as an
estimator since no noises are injected into the system simulation. The cost functional,
weighting and filter parameters chosen for controller design are described in detail in
Or et al. (2001) which will not be repeated here. For robustness, in the design, the
Kalman filter input matrix G has been set equal to the control input matrix B , a step
known as the loop transfer recovery to recover the full-state feedback performance
of the optimal regulator. The weights for the objective functions, as well as the filter
parameters and the loop transfer recovery are described in Or et al. (2001).

It is worth noting that the LQG controller is a variant of the H∞ controller when
the disturbance attenuation bound is infinite (see Rhee & Speyer 1991). In Or et al.
(2001), robustness is demonstrated classically by having large gain and phase margins
in the closed-loop response. Furthermore, if a full loop transfer recovery is achieved,
the full-state feedback LQ regulator performance will have a robustness of ±60◦ phase
margin and 6 db to infinite gain margin. Since our system is non-minimal phased,
only partial recovery is expected. Since large gain and phase margins were obtained
for the linear system, the performance of the LQG controller in terms of robustness
should not be expected to be significantly different from that of the H∞ controller.

In figure 1, we show the three-dimensional nonlinear plant model. The control
input and measurement output of the model are Fourier–Chebyshev coefficients
rather than their collocation point values. On the other hand, in the physical plant
(such as in laboratory experiments) the input and output are physical temperature
distributions. Since the LQG controller is formulated in the modal space, when the
upper block represents the plant instead of the model, an FFT and an IFFT have to
be performed, respectively, at the input and output of the controller. In our case, the
LQG controller takes the measurements from the three-dimensional nonlinear plant
model (Fourier coefficients at sensor planes) as input and determines a control action
(Fourier coefficients at actuator plane) as output. The estimate state vector represents
the vertical structure and the state matrices A∗, B∗, C∗ and D∗ are computed in
terms of the designed values of wavenumber and Rayleigh number, α∗

km and Ra∗ (see
equation (3.7) of Or et al. 2001).
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The truncation numbers (K = 32, M = 32, N = 32 + 1) considered here are of
moderate size. It is still convenient to compute and pre-store the steady-state Kalman
gain K f and regulator gain, K c. However, it is not feasible to pre-store the state
matrices A∗ for all the wavenumbers. Instead, we compute A∗ for each set of
wavenumbers at each time step in the time loop. At each time step, the three sensor
plane temperatures, in modal coefficients, θkm,s(zi, t) (i =1, 2 and 3) (see (2.8)), are
exported from the nonlinear plant model. There are 6(K + 1)M of such coefficients,
corresponding to wavenumbers 0 to Kαx in the x dependence and (−M +1)αy to Mαy

in the y dependence. These values are then fed into the controller which consists of
the Kalman filter and the regulator. The controller processes the information based on
the measured data and determines the control output in terms of a set of 2(K + 1)M
modal coefficients for θkm,c(0, t). These values are then input into the nonlinear model
through the lower-wall boundary condition.

2.4. Green’s function for point sensors and actuators

In some experimental implementations (Tang & Bau 1998a), the sensors and actuators
are discrete rather than continuous. For the low-resolution point sensors and actuators
(typically with spacing between array points of O(d)), it is desirable to stack the arrays
of sensor and actuator points vertically on top of each other. Indeed, our result will
show that the maximal effect of actuation caused by an impulse on the sensor plane
occurs as a point collocated horizontally with the impulse. For a linear system, the
controller input-to-output relationship can be expressed in the following integral form,

θc(x, y, t) =

∫ ∫ ∫
G(x, y, t |x ′, y ′, t ′)θs(x

′, y ′, t ′) dx ′ dy ′ dt ′, (2.22)

where θc(x, y, t) and θs(x
′, y ′, t ′) are, respectively, the planar actuator and sensor

temperature fields. Here, (x, y) and (x ′, y ′) denote coordinates for the actuator and
sensor planes, respectively. The kernel G(x, y, t, |x ′, y ′, t ′) is a Green’s function (or an
influence function). The first three arguments in G represent the effect and the last
three represent the cause.

In principle, the input and output of the LQG controller can be represented
by a linear differential operator L. The precise form of L need not be specified
here, since for our purpose the Green’s function will be computed spectrally. In
terms of L, we can describe some general properties of Green’s function. The
input and output temperatures to the controller are governed by Lθc = θs , subject
to appropriate lateral boundary conditions in x, y. The Green’s formula for any
two arbitrary functions u(x, y, t) and v(x, y, t) can be written as the sum of an
integral

∫ ∫ ∫
(uLv − vL+u) dx ′ dy ′ dt ′ and a number of terms evaluated at the lateral

boundaries x = 0, 2π/αx and y = 0, 2π/αy . In the formula, L+ is the adjoint operator
of L. Now if further restrictions are imposed on u and v, the Green’s formula produces
some important property about the Green’s function. Let u = G(x, y, t |x1, y1, t

′) and
v = G+(x, y, t |x2, y2, t

′) where G and G+ satisfy, respectively,

LG(x, y, t |x1, y1, t
′) = δ(x − x1)δ(y − y1)δ(t − t ′),

L+G+(x, y, t |x2, y2, t
′) = δ(x − x2)δ(y − y2)δ(t − t ′).

}
(2.23)

In addition, G and G+ satisfy the appropriate lateral boundary conditions and adjoint
boundary conditions so that the boundary terms in the Green’s formula vanish. The
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Green’s formula becomes∫ ∫ ∫
(G+LG − GL+G+) dx ′ dy ′ dt ′ ≡ 0. (2.24)

Substituting (2.23) into (2.24), we obtain Maxwell’s reciprocity relationship G

(x2, y2, t |x1, y1, t
′) = G+(x1, y1, t |x2, y2, t

′). In our problem, the lateral boundary
conditions are periodic. The differential operators in x and y are even in ∂x and
∂y . The linear operator L is self-adjoint, i.e. L ≡ L+ and the symmetric relationship
holds,

G(x2, y2, t |x1, y1, t
′) = G(x1, y1, t |x2, y2, t

′). (2.25)

The symmetry relationship above can be interpreted as follows: at a given time t > t ′,
an actuator output of the controller at (x2, y2) due to a unit impulsive sensor input
of the controller at (x1, y1) and time t ′ is equal to the actuator output at (x1, y1) due
to a unit impulse sensor input at (x2, y2) and time t ′.

Of particular interest here is the shape of the actuator temperature θc(x, y, t)
generated by a unit impulse temperature at a sensor point (xp, yp), say, at t = tp .
The spatial roll-off of the actuator temperature affects the spatial resolution of the
spacing between sensor points. Let the impulsive measurement be

θs(x
′, y ′, t ′) = δ(x ′ − xp)δ(y ′ − yp)δ(t ′ − tp), (2.26)

from (2.22) we obtain the Green’s function

θc(x, y, t) = G(x, y, t |xp, yp, tp). (2.27)

For each Fourier mode that corresponds to the wave vector (kαx, mαy) (where −K/2 �
k � K/2 and −M/2 � m � M/2), the coefficient represents an entry of measurement
vector z in the filter equation, (2.21). We then have

u(z, kαx, mαy, t) =

∫ t

0

exp (A∗ − K f C∗)(t − τ )z(τ ) dτ. (2.28)

Note that the homogeneous solution due to the initial condition decays rapidly and
does not contribute for sufficiently large t . After the z and u of all the Fourier modes
are computed, a FFT will transform the two sets of coefficients to θs(x, y, zs, t) and
θc(x, y, 0, t), respectively. When θs(x, y, zs, t) is impulsive according to (2.26), then
(2.28) gives the Green’s function.

3. Numerical results
3.1. Nonlinear convection

Above the value Ra = Rac0 ≈ 1707.76, the no-motion state gives rise to steady two-
dimensional convection rolls. Depending on the value of Pr, these rolls in turn will
become unstable at still higher values of Ra, making transitions to two-dimensional
oscillatory convection or steady three-dimensional convection depending on the value
of the Prandtl number. Cross & Hohenberg (1993) give considerable detail about the
bifurcation diagram.

Before engaging in the closed-loop numerical simulations, it is worth performing
some comparisons to known results, as check cases for validating the nonlinear
plant model. In Clever & Busse (1974), selective Nusselt number values for the two-
dimensional convection solution were published. Table 1 shows the values of the
Nusselt number, Nu, for several different values of Ra at Pr = 0.71 and 7.0 for
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Ra Pr = 0.71 Pr = 7.0

2000 1.210 (1.212) 1.214 (1.214)
2500 1.472 (1.475) 1.475 (1.475)

10 000 2.653 (2.661) 2.608 (2.618)

Table 1. Nusselt number values for two-dimensional rolls.

two-dimensional rolls at αx = 3.117 (αy = 0). The Nusselt number is a measure of the
convective heat transfer, defined as the value of temperature gradient at either upper
or lower wall,

Nu = 1 +

N∑
n=0

θ00n

dTn(z)

dz

∣∣∣∣
z=0,1

, (3.1)

where the first two zero indices of θ00n correspond to k =m = 0 so that the sum
represents the temperature gradient averaged over the horizontal plane. In the absence
of an internal heat source, the values of Nu evaluated at z = 0 and z = 1 should be
equal. Our open-loop, steady-state solutions are obtained at truncation numbers
K =16, M =8 and N = 16, for αx = 3.117 and αy = 0 (transverse rolls). In table 1, the
values published in Clever & Busse (1974) are shown in parentheses. In all cases, the
difference between our value and theirs is less than 0.4%. For values of wavenumber
αx = 2.2 and 2.6, respectively, where Pr = 7 and Ra = 10 000, we obtain Nu = 2.465
and 2.548 versus their values 2.473 and 2.557. We further note that Nu should not
depend on the orientation of rolls. As a consistency check, we compare the Nu of
our solutions between the longitudinal (αx = 0, αy �= 0) and transverse rolls (αx �= 0,
αy = 0). The difference of the Nu values is found to be less than 0.02%.

3.2. Proportional feedback control

We now turn to the proportional feedback control problem. From the results of
Tang & Bau (1994) and Or et al. (2001), oscillatory convection occurs when the
proportional gain Kp becomes sufficiently large. At Kp = 6, for instance, the linear
theory at Pr = 7 predicts that an oscillatory instability is preferred over the steady-
state rolls. The closed-loop threshold of stability is αc = 3.73 and Ra = 3.63Rac0, with
the frequency of oscillation equal to 20.4. For the same values of Ra and wavenumber
we use the steady state two-dimensional rolls as the initial conditions for our time-
domain simulation. Our results appear to be consistent with the prediction of linear
theory. Figure 2 shows the behaviour of Nu of the closed-loop solutions at Kp = 6
for two values of Ra/Rac0: at 3.55 (solid) and 3.65 (dashed). In both curves, the
open-loop steady two-dimensional rolls are used as the initial condition. These rolls
are obtained at Ra/Rac0 = 3.65 and αx = 3.73 which yield Nu = 2.273. In figure 2 the
solid curve shows stable behaviour whereas the dashed curve is unstable. The neutral
curve has Ra/Rac0 approximately equal to 3.60. This value is in close agreement
with the result of linear theory. Furthermore, the oscillatory behaviour in the curves
indicate a frequency of about 40.3, again consistent with eigenvalue prediction of
2 × 20.4 of the linear theory. It is noted that Nu has a harmonic frequency equal to
twice the fundamental frequency.

The oscillatory convection appears to have a two-dimensional roll planform. The
more interesting finding according to the numerical simulations is that this oscillatory
solution is not unique for the given set of external parameters. It turns out when we
prescribe an additional small perturbation field in the y-dependence, for the same
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Figure 2. Nusselt number of oscillatory convection.
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Figure 3. Closed-loop solution: g-type hexagon pattern.

values of Kp , Ra and αx , the closed-form solution will not settle at the two-dimensional
oscillatory branch if the cross-roll perturbation is not small. For sufficiently large
cross-roll perturbations, the solution will settle down at a subcritical branch. In this
case, the horizontal planform solution is three-dimensional, which resembles the g-
type hexagons (Or & Kelly 2001). Depending on the asymmetry in the perturbation
temperature, hexagon cells with sinking motion near the centre of the cell and rising
motion near the cell wall is referred to as the g-type. For the 
-type hexagons the
opposite is true. In figure 3, we show (a) the planform corresponding to temperature
at the lower wall (z = 0) and (b) the planform corresponding to horizontal velocity
components at horizontal plane z = 0.1 (the velocity components vanish at the lower
wall owing to a non-slip boundary condition). The three-dimensional hexagonal
convection is a steady-state pattern and corresponds to Nu = 1.4352. The hexagonal
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Figure 4. A sketch of the stability boundaries for the uncontrolled layer at Pr = 7.0.

solution induced by the controller action has been studied in considerable detail (see
Shortis & Hall 1996; Or & Kelly 2001) based on weakly nonlinear analysis. Here, we
actually obtain the solution from a direct numerical simulation. We summarize several
important conclusions based on the results presented. (i) The solutions obtained from
our fully nonlinear three-dimensional pseudospectral plant model have been checked
and agree reasonably well against known published results from other independent
methods. (ii) The proportional feedback controller induces a subcritical range of g-
type hexagonal convection, which appears to be captured in the nonlinear simulations.
Near the stability threshold of the closed-loop system with sufficiently large gain, both
two-dimensional oscillatory convection and three-dimensional steady-state hexagonal
convection can co-exist in the same parameter region. Next, we consider the closed-
loop simulation using the LQG controller.

3.3. Closed-loop simulations using the LQG controller

We investigate the closed-loop system with an operating condition of the plant
model at Pr = 7.0 and Ra =104. In the set-up, the controller gains K f and K c are
steady states, precomputed and stored. The actual controller and the nonlinear plant
models are implemented in FORTRAN and MATLAB . This controller is implemented
according to the description in § 2.3.

In figure 4, we provide a sketch of the stability diagram of the uncontrolled
dynamics at Pr =7 (see Busse & Clever 1979, figure 1 for the original plot). The
stability boundary of the purely conduction (static) state is the lowest parabolic-
shaped curve. At each Ra above the minimum of this neutral curve (supercritical),
the linear theory predicts an outer band of wavenumbers in which the basic state
is unstable. However, at each supercritical Ra, the stable finite-amplitude convection
occurs in a narrower band of wavenumbers. At Pr =7, the stable finite-amplitude
convection in the inner band corresponds to steady two-dimensional convection rolls.
For Ra = 104 (the dashed line in figure 4), the inner band of wavenumbers is bounded
on the lower side by the cross-roll instability at α ≈ 1.75 and on the higher side by
the skew-varicose instability at α ≈ 3.5. At this Ra, the inner band of wavenumbers
is significantly smaller than the outer band obtained from the linear theory, which
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gives approximately 0.74 and 9.0, respectively. The stability boundaries are in general
Pr dependent.

The stable two-dimensional convection rolls are characterized by a single
wavenumber, but it can be any value within the inner band. Laboratory experiments
(see Cross & Hohenberg 1993) using different initial conditions had demonstrated
that the stable pattern can have a non-unique wavenumber. On the other hand,
certain experiments performed by letting Ra vary either as a slow function of time or
by inducing a spatial ramp in the layer thickness indicate that the rolls are realized
with a unique wavenumber. Since our goal here is to eliminate the convection pattern,
the detailed properties of the nonlinear solution do not concern us other than as the
initial condition for our closed-loop solutions.

The closed-loop simulation is demanding computationally in the sense that the
entire outer band of wavenumbers should be covered in the stabilization of the basic
state. In our simulation, the fundamental wavenumbers αx and αy are selected so
that the expansion covers the entire inner band, but falls short of the outer band.
We argue that this arrangement is reasonable and we use the truncation numbers
K = M = N = 32. The nonlinearity has the role of limiting the wavenumber of the
convection pattern to the inner band. As the initial condition for the closed-loop
simulation, we let αx =1.0 in the open-loop run with appropriate initial condition.
We obtain a steady, two-dimensional roll pattern with a wavenumber of 3.0. In the
closed-loop simulation, we add in a small perturbation of cross-rolls superimposed
on the steady finite-amplitude rolls. The added perturbation assures that the initial
condition used is three-dimensional.

The closed-loop simulation results are shown in figures 5(a)–5(g). Since the
transition is two-dimensional, it suffices to reveal the flow fields by showing the
cross-sectional view in the (z, x)-plane. In figures 5(a)–5(c), we show the transient
pattern of the perturbation isotherms in the (x, z)-plane (with basic temperature
subtracted). The three isotherm patterns (figures 5a–5c) of the disturbance field are
snapshots obtained at t = 0, 0.05 and 0.2 diffusive time units, respectively. Note that
the upper and lower wall are both the perturbation isotherm of zero temperature.
The solid (dashed) lines indicate positive (negative) increments of temperature. The
same increment of temperature applies to all three panels. Figure 5(a) shows the
cross-section of the steady-state convection rolls used as the initial condition at
t = 0. Shortly after the controller is turned on at t = 0, figure 5(b) shows that a
steep thermal boundary-layer pattern develops near the lower wall at t = 0.05. This
boundary temperature perturbation possesses an opposite sign to the perturbation in
the bulk of the layer of fluid, and therefore exerts a cancellation effect, which tends
to drive the fluid towards an isothermal state. Figure 5(c) shows at a later instant
(t = 0.2) that the isotherm pattern indeed settles towards a static state. Here, the
isotherms correspond to a residual temperature distribution of about 1.5% of the
temperature shown in figure 5(a). The residual temperature continues to approach
zero asymptotically in time.

In figures 5(d)–5(f ) we show the quiver plots of the velocity field corresponding
to isotherms in figures 5(a)–5(c). The arrow sizes in figures 5(e)–5(f ) are according
to the true relative scale. For illustration of the flow field we deliberately magnify
the arrows in figure 5(f ). Note that the velocity rolls are shifted by a phase of π/2
relative to the isotherm rolls. The upward (downward) motion of fluid is associated
with the positive (negative) isotherms, as indicated in the figures. From figure 5(e),
we observe that the upwelling and downwelling regions are significantly perturbed
by the control action. As a result, a secondary row of vortices near the lower wall
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is apparent. In figure 5(e), the convective motion becomes so weak that the vortex
structure is no longer visible. Finally, we show the two Nusselt numbers in figure 5(g)
in time as the indicator for convective heat transport. The lower (solid) and upper
(dashed) curves are based on the horizontal-mean temperature gradient at the lower
and upper walls, respectively. The gradient is computed normal to the walls. As the
thermal actuator action is switched on, a large transient perturbation develops near
the lower wall, indicating an increase in local heat flux from the actuator action. The
lower Nusselt number shoots up considerably higher than the upper Nusselt number
initially for a brief duration. Subsequently, the upper Nusselt number is greater than
the lower value, as the heat in the bulk of fluid is transferred away. Between t = 0
and t = 0.474, we determined through integration that the areas under the curves are
0.5635 (solid line) and 0.5628 (dashed line). The two integral values will converge to
the same value in time, as a constraint of the conservation of heat.
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along the dashed line of (a); (c) change of Gmin with t∗.

For a related drag reduction control problem, Cortelezzi & Speyer (1998) developed
a robust reduced-order controller. It is beyond the present scope to consider a reduced-
order controller for this nonlinear simulation. Here, on the other hand we determine
the spatial roll-off characteristic of the controller based on the Green’s function
approach. The roll-off characteristics will shed light on the spatial resolution of the
arrays of discrete sensors and actuators required for a successful control. A good
spatial roll-off implies that relatively few measured points are required to achieve an
effective control (see Bamieh & Dahleh 2001). We refer to the description in § 2.4.
Consider the same case in the numerical simulation for Pr = 7 and Ra = 104 and a
length scale of the layer corresponding to αx = 1 and αy = 1. Figure 6(a) shows the
contour of the Green’s function G(x, y, t |xp, yp, tp), which is the response temperature
on the actuator plane z = 0 owing to an impulse temperature δ(x−xp)δ(y−yp)δ(t −tp)
on the sensor plane zs = 0.3. Here, we let xp = 1.5, yp = 1.5 and tp = 0, l∗ = 20�t with
�t = 10−3. Figure 6(b) shows the response temperature profile as a function of x − xp

along the dashed line designated in figure 6(a). The response temperature corresponds
to G(x, yp, t∗|xp, yp, tp) (with t∗ > tp). The result shows that the function has a
negative minimum, here denoted by Gmin. The minimum is collocated horizontally
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with the sensor impulse. The negative temperature generated is intended to cancel
the disturbance temperature created by the impulsive temperature. Of particular
significance is how steep the response curve (in V-shaped) is, implying that the
influence zone about the sensor point is small. From figure 6(b), the base width of
the V-shape curve is about the width of one roll, assuming that the length scale
of the roll does not differ significantly from its critical value. In order for the controller
to stabilize the convective disturbance, the spacing between successive points in the
array cannot be greater than the effective width of the response temperature.

The plots in figure 6(a)–6(b) represent a snapshot at t = t∗. We observed that as t∗

increases from 0, the shape and width of the temperature profile (see figure 6b) have
changed little, but the magnitude of the minimum decreases rapidly. In figure 6(c),
we show the change of the temperature at the minimum, Gmin, with t∗. The large dot
in figure 6(c) denotes the point corresponding to the snapshot of figures 6(a)–6(b).
Since the system is diffusive, the response temperature decays monotonically in time,
as expected.

4. Experimental considerations
For implementation of the LQG feedback control design, an experiment of RBC

is considered. This effort will be guided by the result of the nonlinear simulation,
modified for air at room temperature (with Pr ≈ 0.7) as the working fluid. Although
the closed-loop numerical results presented earlier in the paper is for the case Pr = 7.0
only, our supplementary analysis completed only recently at Pr = 0.71 has revealed
that there is no significant difference in the closed-loop response between the two
Prandtl numbers for the condition Ra = 104.

For RBC, previous experiments demonstrate that the initial and onset conditions, as
well as the realized convection pattern, are predictable under controlled experimental
conditions (Cross & Hohenberg 1993). Complex situations in applications such as
variations of material properties, occurrence of concentration gradient and solutal
convection, presence of horizontal basic temperature gradient, sidewall effects, defects
in pattern, etc., are not included.

In the experimental apparatus, the upper and lower walls will be of two types of
material with a large range of heat conductivity. The two walls have large aspect ratio
to the layer depth, and may have different thermal boundary conditions. Miniature
strain gauge type heaters will be strategically placed at the lower wall as actuator
(with separation between heaters determined by the wavelength of the pattern to
be controlled). For air, it is convenient to use the holographic interferometry as
the sensing technique. Such a sensor can detect temperature differential to high
precision. Our LQG controller design has been validated using simulated sensor data.
Eventually, for implementation in the experiment, a reduced-order LQG controller
will be developed. The three-dimensional pseudospectral model will be modified to
accommodate the spatial and temporal dynamics of the sensors and actuators, guided
by laboratory observations and the experimental data.

5. Conclusion
The goal achieved in this study is a successful demonstration through numerical

simulations that a fully nonlinear steady and preferred state of convection in a
horizontal layer of fluid can be reverted to the no-motion state by closed-loop
controller action. The simulated results here show the performance of the LQG
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controller at Ra = 104 and Pr = 7. At this Ra, the proportional feedback controller is
ineffective according to the linear theory. For even higher values of Ra, stabilization
is likely to be achievable with the LQG controller by using higher spatial resolution
in the simulation, but we have not pushed for that result. The reason is that for
realistic modelling at high Ra the effects of the discrete actuator and actuator delay
are important considerations as well. Although a general stability proof cannot be
inferred from the nonlinear simulation of a few initial conditions, the results do
indicate that the linear controller appears quite responsive in suppressing important
finite disturbances.

The numerical method used here to develop the nonlinear plant model is
pseudospectral spatially. The integration of the model dynamics equation is performed
by a time-splitting technique. We have adopted the conventional scheme developed
in Marcus (1984) (also see Canuto et al. 1986). However, since some significant
modification of the scheme has been made, we validate our fully nonlinear three-
dimensional plant model by comparing check cases against published results, in
particular, from Clever & Busse (1974) and Busse & Clever (1979). The agreement
appears reasonably good. Moreover, the direct simulation verifies the results of the
weakly nonlinear analysis (Or & Kelly 2001) about the presence of the controlled-
induced subcritical g-hexagon solution.

We have also examined the shape function of the actuator response by computing
the Green’s function of the LQG controller. The shape of the actuation temperature
determines the order of the horizontal distance between points of the sensor/actuator
arrays in term of the layer gap thickness d . This information is of critical importance
when the more realistic pointwise sensor and actuator are used instead of the
continuous ones.

This research is supported by the United States Air Force (Grant no. F49620-00-1-
0166).
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